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Supplementary Text 

Attractor Reconstruction from Time Series 

 Broadly speaking, dynamic systems can be described as a set of states (i.e., a manifold) 

and rules (governing dynamics or hidden equations) for how the states evolve over time. Motion 

on the manifold can be projected onto a coordinate axis, forming a time series (Figure S1A). 

More generally, however, any set of sequential observations of the system state (i.e. a function 

that maps the state onto the real number line) is a time series. 

 For example, the Lorenz attractor (a simplified description of turbulent flow in the 

atmosphere (1)) is a dynamic system where the states are 3-dimensional vectors with coordinates 

x, y, and z, and whose motion is governed by three differential equations (Equation S1). 
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In an ecological setting, these variables could represent the abundances of different species (e.g., 

salmon, zooplankton, and phytoplankton), with the equations capturing the biological processes 

of growth, death, and predation. The projection of the system state onto one of the axes gives a 

time series for the population corresponding to that variable (Figure S1A). 

 If one knew all the relevant variables of a system, their time series could be used to 

reconstruct the original manifold, by plotting each variable as a separate coordinate. Given time 

series of sufficient length, it might even be possible to derive the equations of motion for that 

system. However, in nature, the system may be highly complex (hundreds or thousands of 

interacting variables or components), and time series are generally short. The method of time-

delay embedding (2, 3) offers a solution to this problem; reconstructions of a dynamic system 

can be made using successive lags of a single time series (Figure S1B). Takens’ theorem (2) 

states that, if enough lags are taken, this form of reconstruction is generically a diffeomorphism 

and preserves essential mathematical properties of the original system. In other words, local 

neighborhoods (and their trajectories) in the reconstruction map to local neighborhoods (and 

their trajectories) of the original system. This also permits forecasting, by finding nearest 

neighbors from among the historical record and using their behavior to estimate how the system 

will evolve through time (e.g., simplex projection, see Materials and Methods in main text). 
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Identifying Nonlinearity in Sockeye Salmon Dynamics 

 One application of EDM is to identify nonlinear dynamics in time series. For the Fraser 

River system, we first consider the 9 stocks in aggregate. Following (4), each time series of 

returns is linearly transformed to have mean = 0 and variance = 1. This preserves the quasicyclic 

behavior of each stock, but corrects for the relative magnitude across different stocks. The 

normalized time series are joined together end-to-end, in effect treating them as 9 instances of a 

single time series. Using simplex projection with τ = 1 and predicting 1 year into the future, 

forecast skill (ρ) is maximized when 4 successive lags are used (Figure S2A). This is somewhat 

expected, because the quasi-cyclic nature of these returns has a 4 year periodicity: knowing the 

previous 4 years is sufficient to identify the current phase and estimate the current magnitude of 

returns. 

 Next, we employ the S-map procedure (5), which compares equivalent linear and 

nonlinear models (adjusting a tuning parameter, θ) to test for nonlinear dynamics. When θ = 0, 

all points are weighted equally, and the model reduces to an autoregressive model of order E. For 

θ > 0, nearby points are given stronger weighting, allowing the model to be adaptive to local 

influences and therefore, nonlinear. If the behavior of sockeye returns is purely periodic, then the 

linear model should have the highest forecast skill, because it can smooth out errors over the 

entire data set. However, Figure S2B shows that forecast skill peaks when θ is ~ 2, which is 

evidence for nonlinearity in the aggregate time series. Using the randomization test of (6, 7), this 

improvement in forecast skill (decrease in MAE) is significant with P = 0.002. 

 As noted in (4), nonlinearity may appear as an artifact when aggregating linear time 

series with somewhat different dynamics. Therefore, to confirm the presence of nonlinearity, we 

also apply the S-map to each stock individually, using the same randomization test for whether 

the improvement in forecast error (MAE) is significant at the α = 0.10 level (Table S1). Overall, 

these results are encouraging: we find 6 of the 9 stocks to be significantly nonlinear. We note, 

however, that the lack of significant nonlinearity in the Birkenhead, Seymour, and Weaver stocks 

may not necessarily indicate that these stocks are linear, as the S-map test can require lengthy 

time series for accurate discrimination. 

Convergent Cross Mapping 

 If salmon mortality is strongly influenced by the environment, then the time series of 

salmon recruitment will contain information about past environmental states. This means that it 
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is possible to estimate past environmental conditions from salmon abundances. To the extent that 

this is true, the ability to recover past environmental states from the salmon time series is 

evidence for causal influence by the environment. This criterion for causation (convergent cross 

mapping, CCM) can be used to identify key variables and operates in nonlinear systems whereas 

linear correlation does not (8, 9). 

 CCM operates on much the same principle as generalized simplex projection in Equation 

2 (see Materials and Methods in main text). Here, the notion is that if variable y has a causal 

influence on x, then the system state (represented using only lags of x) will contain an imprint of 

y. Thus, it should be possible to map between states of the system (the univariate reconstruction 

based on x) and the value of y. Cross mapping strength can be assessed by the correlation 

between the estimated values of y and the corresponding observed values. In a fully deterministic 

system with no noise, we expect this cross mapping correlation to approach 1 as time series 

length increases and the reconstruction becomes denser. As a practical indicator of causal 

influence, here we test whether the correlation is significantly positive when using the whole 

time series. 

 It is important to note that if a variable y is stochastic and influences x with a time lag, 

then cross mapping from x to y may show evidence of a causal interaction only if the 

appropriately lagged value of y is estimated. Here, we are interested in testing for the influence 

of the environment on juvenile salmon, which occurs when the salmon are 2 years old. Thus, a 

reconstruction based on salmon abundance for brood year t should be informative about the 

environment in calendar year t+2. Moreover, because it is only the 2-year old salmon that are 

affected by this early oceanic environment, it would not make sense to include measures of 

salmon abundance from multiple spawning broods (i.e., only salmon from brood year t should 

have information about the environment in year t+2). Therefore, we use multivariate CCM, cross 

mapping from the reconstruction !! = !!!,!!!  (where !!! and !!!  are the cycle-line normalized 

spawner and recruit abundances of brood year t, respectively, to account for the effect of cyclic 

dominance) to yt = Ut+2 (where Ut+2 is an environmental variable measured in calendar year t+2), 

to estimate the environmental effect that would have influenced that brood of salmon. 

 Table S3 shows the cross mapping results for each combination of the 9 stocks and 12 

environmental time series considered in this work. Only some of the relationships appear 

significant, with most of the significant cross mapping occurring between temperature and the 
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Chilko, Early Stuart, Late Stuart, and Quesnel stocks. Surprisingly, this did not seem to match 

well with the identification of environmental variables using multivariate EDM (SST does not 

appear to be a necessary variable to achieve skillful forecasts for Chilko, Early Stuart, or Late 

Stuart). Moreover, for some stocks, river discharge or the PDO appeared to be important (EDM 

models excluding those variables produced substantially less accurate forecasts). Overall, this 

suggests that the effects of these environmental variables on recruitment may be more complex 

than can be captured with our CCM analysis. For instance, it could be the case that knowing the 

spawner abundance and river discharge can predict recruitment, but that this function may not be 

one-to-one, and so it is difficult to cross map the historical river discharge from the spawner and 

recruit data of a specific brood year. 

 In other systems, we could resolve such singularities in the cross mapping relationship by 

including more coordinates (i.e., using additional time series lags) in the reconstruction. 

However, here we are limited by the fact that our data (generally) record only 2 measurements of 

abundance for each spawning brood (spawner abundance and recruitment). Such is not the case 

for other marine species that are sampled in annual surveys, where an external influence that has 

occurred at a particular life stage will leave a record multiple times in the data (because the 

affected organisms will be recorded in many consecutive data points). 

Determining Causal Environmental Variables 

 In addition to improving forecasts, an important application of EDM is to identify 

informative environmental variables and elucidate potential mechanisms. Here, an environmental 

variable is deemed causal if including that variable into a multivariate EDM model improves 

forecast skill. Thus, we use multivariate EDM to determine if the environment has any causal 

influence on sockeye salmon recruitment, by testing different combinations of environmental 

variables (Table S4). As noted above, data limitations mean that the CCM analysis (Table S3) 

may not be sensitive enough to identify environmental drivers for this system. 

 The results of multivariate EDM (Table S4) reveal which specific variables may be 

uniquely informative for particular stocks, or whether some variables may actually be 

interchangeable. When interpreting Table S4, it is important to keep in mind the nonuniqueness 

property of EDM models (i.e., there is no “true” model, but many combinations of variables that 

can give similarly good performance). Thus, the inclusion of a variable in multivariate EDM 

does not imply a direct causal link, as the variable could be an indirect observation of the true 
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mechanism. Furthermore, the exclusion of a variable does not mean that said variable has no 

effect, either. It could be the case that multiple stochastic drivers interact to affect recruitment, 

such that an incomplete set of observations on those drivers do not improve forecasts. In such 

cases, extending the set of tested variables may reveal causal mechanisms that were previously 

hidden. 

 In addition, because EDM operates in a nonlinear (non-additive) framework, we note that 

it is not possible to partition a model’s performance (i.e., variance explained) in terms of 

individual variables. Nonlinear state-dependence necessarily implies that the effect of one 

variable may depend on another. For example, in a model that includes temperature and river 

discharge, the addition of temperature may improve forecasts only under certain conditions of 

river discharge (e.g., low temperatures are better for recruitment, but only when river discharge 

is high). Including temperature by itself may not improve forecasts at all, and so the “variance 

explained” by temperature necessarily depends on the other variables of the EDM model, thus 

making it impossible to assign independent r2 (variance explained) values for each variable in the 

model. 

Possible Causal Mechanisms for SST, River Discharge, and the PDO 

 The tested variables (river discharge, sea-surface temperature, the Pacific Decadal 

Oscillation) have been thought to influence sockeye salmon recruitment by being indicative of 

juvenile mortality in the early marine period (i.e., the first year of ocean residence) (10). For 

example, river discharge may improve multivariate EDM forecasts because of its effect on food 

availability, which is believed to play a role in determining this mortality (11). By affecting 

estuarine circulation in the Strait of Georgia, freshwater input (from the Fraser River and other 

riverine sources) can influence ocean productivity (12); indeed, river discharge, in combination 

with wind and other factors, has been linked to low oceanic productivity in the Strait of Georgia 

that may have contributed to poor returns of sockeye salmon in 2009 (11, 13). 

 Using multivariate EDM, we do find support for river discharge as an informative 

variable, with the best EDM model for 4 of the 9 stocks containing river discharge as a 

coordinate (Table 1). Furthermore, for these 4 stocks (Early Stuart, Late Shuswap, Late Stuart, 

and Weaver), nearly all of the top-ranking EDM models include river discharge as a coordinate 

(i.e., Table S4). However, other than Late Stuart, there are EDM models excluding river 

discharge that have similar performance, suggesting that for Early Stuart, Late Shuswap, and 



   7 

Weaver, river discharge may be redundant if other observations of the environmental are 

available. Thus, while river discharge may be an informative variable, it does not appear to be 

strictly necessary for skillful predictions, except in the case of Late Stuart. 

 Pine Island SST also appears to be an important variable, and is included in the best 

multivariate model for 4 of the 9 stocks (Table 1). With Pine Island lighthouse located at the 

boundary between Queen Charlotte Strait and Queen Charlotte Sound (Figure 3), the measured 

SST could be informative about the conditions that juvenile sockeye salmon experience after 

exiting the Strait of Georgia. That Pine Island SST can be informative about recruitment 

resonates with evidence that anomalous conditions in this area during 2007 were associated with 

low returns 2 years later (2009), while favorable conditions (low freshwater runoff and moderate 

northerly winds) in 2008 were associated with record high returns in 2010 (13). Here, only the 

Quesnel stock seems to require Pine Island SST for skillful forecasts, as the best model for 

Quesnel excluding this variable is much less skillful. For the remaining 3 stocks where the best 

EDM model included Pine Island SST, there were alternative multivariate EDM models 

including only other variables that showed very similar performance (Table S4). This suggests 

that the information in Pine Island SST relevant for predicting recruitment in these stocks may be 

duplicated in other environmental variables (see discussion in main text on non-uniqueness). 

 Lastly, although many studies (14-16) have found that decadal-scale climate and oceanic 

indicators, such as the PDO, are predictive of regional productivity for Pacific salmon, one 

important question is whether this relationship holds at the individual stock level (i.e., do all 

stocks rise and fall in sync with one another). Among the Fraser River sockeye salmon, at least, 

there do not appear to be consistent patterns: there has been an overall decline since the early 

1990s, but productivity for some stocks (e.g., Early Stuart) has been declining since the 1960s, 

while others (e.g., Late Shuswap, Weaver) have not exhibited a declining trend at all (17). Our 

results similarly show no uniform effect of the PDO, as the best EDM model only includes the 

PDO as a coordinate for 2 of 9 stocks. In both cases (Stellako and Quesnel), however, 

performance is substantially improved when other variables are included compared to the model 

that includes just the PDO (Table S4). Thus, while the PDO may be informative for overall 

productivity of the Fraser River system, individual stocks appear to be sensitive to more 

localized environmental conditions; thus including additional (local) environmental variables is 

essential for improving forecasts for those stocks. 
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Including Smolt Data into EDM Models 

 For the Chilko stock, even an exhaustive search for the best possible multivariate EDM 

model did not produce very accurate forecasts (ρ < 0.4, Figure S4). One possible explanation is 

that the relationship between spawner abundance and recruits is complex, such that a 

reconstruction using spawning stock and the tested environmental variables does not uniquely 

determine recruitment. In such cases, additional observations, such as other environmental 

factors or measures of salmon abundance at different ages, could resolve singularities in the 

reconstruction, thereby improving forecasts. For the Chilko stock, a long time series of smolt 

abundance is available, allowing us to include this variable as an additional coordinate in the 

multivariate EDM model (Equation S2, !!! is smolt abundance normalized to the current cycle 

line). Testing this model, we found improvements in both accuracy and error (Figure S4). 

 !! = !!!, !!!,ET!!!,May,PDO!!!  [S2] 

 Although the added expense of collecting this kind of data many not be reasonable for all 

stocks (particularly those that are already very predictable using the tested variables), these 

observations of sockeye at different ages are additional sources of information that could 

potentially improve forecasts, giving managers the ability to make trade-offs between data 

collection and predictability. 

Estimating Uncertainty for Simplex Projection Forecasts 

 We note that the EDM models presented here produce point estimates for the number of 

returning sockeye salmon. However, fisheries management protocols often require an estimate of 

the uncertainty surrounding each forecast (i.e. confidence intervals) in order to evaluate the risks 

associated with management actions. Within the EDM framework, this uncertainty can be 

addressed in several ways. For example, the relative divergence of nearby trajectories in the 

reconstructed state space measures how sensitive the future will be to the current state, and is 

therefore directly indicative of forecast uncertainty. Here we demonstrate a simple 

implementation of this idea, by noting that the simplex projection method produces forecasts by 

computing a weighted average of the target variable, y (equation 2 from the main text):  

 !!!! =
!!(!)!! !,! !!

!
!!!

!!(!)!
!!!

 [S3] 

In effect, the values of yn(s,i)+h can be thought of as the sample space for the desired prediction, 

where each value has probability !! ! = !! !
!! !!

!!!
. Equation S3 computes a forecast as the 
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expected value of this probability mass function. This idea can then be extended to the second 

moment of this function in order to compute a variance: 

 Var !!!! = E (!! !,! !! − !!!!)! = !! ! !! !,! !!!!!!!
!!

!!!
!!(!)!

!!!
 [S3] 

Note that as the difference between each neighbor’s forecast and the weighted average increases, 

variance will also increase, thus tracking the divergence of the nearest neighbors. 

 Because simplex projection is used to forecast relative age 4 and age 5 recruits, which are 

linearly combined to forecast returns (see Materials and Methods), we can similarly compute the 

variance of returns: 

 
Var !! = Var !!,!!! + Var !!,!!! + Cov(!!,!!!,!!,!!!)

Var !!.! = Var !!,!! ∙ !! !!
!  [S4] 

Here, because the age 4 and age 5 recruits are computed from separate data, we can assume that 

the covariance is 0 (because the selection of nearest neighbors used to compute !!,!!! are 

independent of those used to compute !!,!!!). 

 This is demonstrated in Figure S5 for the best multivariate EDM model of the Late 

Shuswap stock. Plotting the EDM forecasts along with standard errors, it is clear that there is 

good correspondence: variability is higher for the dominant cycle line (as would be expected) 

and forecasts are generally within 1 standard error of the realized returns. 
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Movie S1 (legend only) 

This movie describes the essential mechanics of Empirical Dynamic Modeling, demonstrating 
the relationship between time series and dynamic attractors and illustrating how Takens’ 
Theorem (23) can be used to reconstruct a shadow manifold.  
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Figure S1. Reconstruction of System Dynamics from a Time Series 

A Projecting the motion of the canonical Lorenz attractor onto the x-axis yields a time series for 

variable x. B Successive lags (with time step τ) of the time series xt are plotted as separate 

coordinates to form a reconstructed “shadow” manifold that preserves essential mathematical 

properties of the original system (and is visually similar).  
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Figure S2. Nonlinearity in Fraser River Sockeye Salmon. 

Following (36), we concatenate time series of returns for 9 stocks. A Forecasting returns using 

simplex projection, 4 is identified as the optimal embedding dimension. B Using the S-map 

procedure, forecast skill is highest for θ ~ 2 (P = 0.002), which demonstrates nonlinear state 

dependence in salmon dynamics.  
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Figure S3. Comparison of Forecast Precision using MAE 

The simple EDM model has lower error than the equivalent Ricker model, (t(493) = -1.75, P = 

0.041). Including environmental data significantly improves precision for the EDM models 

(t(493) = -4.58, P = 3.0×10-6), but not for the Ricker models (t(493) = -1.54, P = 0.062), and the 

resulting multivariate EDM models also have significantly lower error than the Ricker 

equivalents (t(493) = -3.87, P = 6.2×10-5). 

 

* Note that the error for the Ricker and extended Ricker model extends beyond the upper range 

shown here. MAE is 2.13 for the Ricker model and 2.06 for the extended Ricker model.  
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Figure S4. Including Smolt Data into the Chilko EDM Model 

For the Chilko stock, adding smolt time series as a coordinate in the best environmental EDM 

model (spawners & May Entrance Island SST & the PDO) improves both accuracy and error.  
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Figure S5. Standard Errors for EDM Forecasts of Late Shuswap Returns. 

Extending the simplex projection algorithm, standard errors for each forecast can be computed. 

Here, the predictions of the multivariate EDM model are plotted against observations for the 

Late Shuswap stock.  
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Table S1. Nonlinearity Tests for Individual Stocks 

stock E θ ΔMAE P value significantly 
nonlinear? 

Birkenhead 5 0 0 0.494 no 
Chilko 6 2 -0.070 *0.024 yes 
Early Stuart 6 4 -0.023 *0.050 yes 
Late Shuswap 4 2 -0.389 *0.014 yes 
Late Stuart 8 3 -0.054 *0.060 yes 
Quesnel 7 4 -0.298 *0.008 yes 
Seymour 8 0.5 -0.002 0.162 no 
Stellako 7 2 -0.025 *0.014 yes 
Weaver 1 0 0 0.496 no 

E is embedding dimension, θ is the optimal value of the nonlinear tuning parameter, ΔMAE is 

the difference in error between the model at the optimal value of θ and the model at θ = 0 

(negative values indicate a decrease in error, or improvement with θ > 0), P value is for a 

randomization test with 500 iterations (* indicates significance at the α = 0.10 level). 

  



   19 

Table S2. Comparison of Model Performance 

comparison performance 
measure 

test type test 
statistic 

df P value 

simple EDM vs. 
Ricker 

ρ t 1.77 492 *0.039 
MAE t -1.75 493 *0.041 

multivariate EDM vs. 
extended Ricker 

ρ t 2.20 492 *0.014 
MAE t -3.87 493 *6.2×10-5 

extended Ricker vs. 
Ricker 

ρ t 1.26 492 0.10 
MAE t -1.54 493 0.062 

multivariate EDM vs. 
simple EDM 

ρ t 2.83 492 *0.0024 
MAE t -4.58 493 *3.0×10-6 

* indicates significance at the α = 0.05 level 
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Table S3. Results of Cross Mapping 

N is the number of predictions, 95% ρ is the critical value for significance at the α = 0.05 level, “xmap {VAR}” columns are the cross 

mapping correlations for {VAR}, where ET is Entrance Island SST, PT is Pine Island SST, D is Fraser River discharge, and PDO is 

Pacific Decadal Oscillation. Highlighted cells indicate significant cross mapping at the α = 0.05 level. 

stock N 95% ρ xmap 
Dmax 

xmap 
Dapr 

xmap 
Dmay 

xmap 
Djun 

xmap 
ETapr 

xmap 
ETmay 

xmap 
ETjun 

xmap 
PTapr 

xmap 
PTmay 

xmap 
PTjun 

xmap 
PTjul 

xmap 
PDO 

Birkenhead 58 0.218 0.108 -0.294 0.105 0.182 0.141 -0.122 0.046 -0.13 -0.003 0.029 -0.024 -0.151 
Chilko 58 0.218 -0.197 0.045 0.172 -0.085 0.161 -0.024 0.215 0.244 0.194 0.288 0.211 0.042 
Early Stuart 58 0.218 -0.005 -0.015 0.166 0.054 0.468 0.459 0.107 0.276 0.300 0.275 0.255 -0.079 
Late Shuswap 58 0.218 -0.3 0.034 -0.178 -0.178 -0.081 0.309 0.011 0.024 0.018 0.166 0.199 0.192 
Late Stuart 57 0.220 0.007 0.036 -0.058 -0.023 0.481 0.512 0.442 0.313 0.377 0.313 0.242 0.182 
Quesnel 58 0.218 0.107 0.443 -0.033 0.087 0.599 0.371 0.243 0.523 0.611 0.562 0.532 0.2 
Seymour 58 0.218 -0.326 0.006 0.157 -0.212 0.057 -0.185 -0.279 0.093 -0.073 0.069 0.219 0.230 
Stellako 58 0.218 -0.063 0.085 -0.017 0.032 0.207 0.033 -0.298 0.101 0.032 0.123 0.081 -0.055 
Weaver 40 0.264 -0.076 0.122 -0.285 0.044 -0.116 -0.213 -0.067 -0.286 -0.085 -0.068 0.043 -0.125 
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Table S4. Results of Multivariate EDM 

stock predictors # predictions ρ MAE 

Birkenhead 

S 57 0.156 0.259 
S, PTjul 57 0.125 0.26 
S, Dmay 57 0.088 0.234 
S, ETmay 57 0.005 0.282 
S, PDO 57 0.005 0.293 
S, PTmay 57 -0.022 0.319 
S, Dmax 57 -0.034 0.303 
S, ETjun 57 -0.108 0.287 
S, PTjun 57 -0.119 0.324 
S, Dapr 57 -0.144 0.306 
S, Djun 57 -0.154 0.324 
S, PTapr 57 -0.166 0.329 
S, ETapr 57 -0.244 0.312 

Chilko 

S 57 0.264 0.839 
S, PTjul 57 0.25 0.853 
S, ETjun 57 0.221 1.006 
S, Dmax 57 0.221 0.914 
S, ETmay 57 0.208 0.942 
S, PTmay 57 0.203 0.918 
S, ETapr 57 0.199 0.934 
S, PTapr 57 0.184 0.879 
S, Dmay 57 0.177 0.839 
S, PTjun 57 0.173 0.921 
S, Dapr 57 0.153 0.896 
S, PDO 57 0.065 1.014 
S, Djun 57 -0.017 1.118 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # 
predictions 

ρ MAE 

Early Stuart 

S, Dapr, Djun 57 0.878 0.140 
S, Dmay, Djun 57 0.876 0.132 
S, Djun, 
ETmay 

57 0.858 0.132 

S, Djun, PTjul 57 0.838 0.127 
S, Djun, ETapr 57 0.837 0.131 
S, Dmax, Djun 57 0.831 0.147 
S, Djun, PTmay 57 0.830 0.144 
S, Djun 57 0.830 0.134 
S, ETapr 57 0.827 0.130 
S, ETmay 57 0.824 0.137 
S, Dmax 57 0.809 0.159 
S, Djun, PTapr 57 0.803 0.156 
S, Dmay 57 0.801 0.154 
S, Djun, PDO 57 0.801 0.143 
S, Djun, ETjun 57 0.794 0.159 
S, Djun, PTjun 57 0.790 0.158 
S, PTapr 57 0.789 0.157 
S, ETjun 57 0.788 0.155 
S, PTmay 57 0.787 0.165 
S, PDO 57 0.783 0.151 
S, PTjun 57 0.781 0.167 
S, PTjul 57 0.749 0.172 
S, Dapr 57 0.718 0.175 
S 57 0.685 0.182 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # predictions ρ MAE 

Late Shuswap 

S, Dmay, PTjul 57 0.923 0.821 
S, Dmay 57 0.912 0.807 
S 57 0.900 0.852 
S, Dmay, ETapr 57 0.892 0.918 
S, Dmay, ETjun 57 0.862 0.968 
S, Dmax 57 0.840 1.000 
S, Dmay, PTmay 57 0.831 1.065 
S, Dmay, ETmay 57 0.831 0.887 
S, Dmay, Djun 57 0.819 1.079 
S, Dapr 57 0.816 1.106 
S, Dmay, PDO 57 0.801 1.161 
S, PTjul 57 0.800 1.059 
S, Dmax, Dmay 57 0.799 1.098 
S, PDO 57 0.799 1.049 
S, PTjun 57 0.795 1.197 
S, PTmay 57 0.795 1.200 
S, Dmay, PTapr 57 0.793 1.114 
S, Dapr, Dmay 57 0.792 1.201 
S, ETapr 57 0.784 1.115 
S, ETmay 57 0.775 1.021 
S, Dmay, PTjun 57 0.772 1.224 
S, ETjun 57 0.764 1.203 
S, PTapr 57 0.753 1.206 
S, Djun 57 0.739 1.200 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # predictions ρ MAE 

Late Stuart 

S, Djun, ETapr 56 0.783 0.250 
S, Dmay, Djun 56 0.752 0.305 
S, Dapr, Djun 56 0.733 0.300 
S, Djun, PTjul 56 0.708 0.316 
S, Djun 56 0.706 0.319 
S, ETmay 56 0.675 0.344 
S, Dmax, Djun 56 0.667 0.343 
S, Djun, PDO 56 0.644 0.338 
S, ETapr 56 0.638 0.336 
S, Djun, PTmay 56 0.625 0.348 
S, Djun, ETjun 56 0.625 0.362 
S, Djun, ETmay 56 0.621 0.365 
S, Djun, PTapr 56 0.618 0.352 
S, PTjun 56 0.602 0.403 
S, Dmay 56 0.590 0.376 
S, Dapr 56 0.588 0.409 
S 56 0.550 0.422 
S, PTmay 56 0.548 0.414 
S, Djun, PTjun 56 0.548 0.394 
S, PTapr 56 0.545 0.430 
S, PDO 56 0.545 0.368 
S, PTjul 56 0.518 0.418 
S, ETjun 56 0.509 0.428 
S, Dmax 56 0.469 0.478 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # predictions ρ MAE 

Quesnel 

S, PTmay, PDO 57 0.861 0.729 
S, ETjun, PTmay 57 0.787 0.871 
S, PTapr, PTmay 57 0.770 0.894 
S, Djun, PTmay 57 0.768 0.895 
S, Dmax, PTmay 57 0.756 0.884 
S, ETapr, PTmay 57 0.754 0.922 
S, PTmay 57 0.753 0.889 
S, PTmay, PTjul 57 0.739 0.905 
S, PTapr 57 0.729 0.969 
S, PTmay, PTjun 57 0.726 0.945 
S, Djun 57 0.724 0.927 
S, Dmax 57 0.705 0.942 
S, PDO 57 0.697 0.950 
S, ETjun 57 0.674 1.133 
S, Dmay, PTmay 57 0.651 1.048 
S, ETmay, PTmay 57 0.642 1.071 
S, ETapr 57 0.616 1.121 
S, Dapr, PTmay 57 0.589 1.068 
S, PTjun 57 0.571 1.087 
S, PTjul 57 0.569 1.164 
S 57 0.569 1.168 
S, Dapr 57 0.500 1.297 
S, ETmay 57 0.476 1.358 
S, Dmay 57 0.459 1.311 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  

stock predictors # predictions ρ MAE 

Seymour 

S, PTjul 57 0.734 0.065 
S, PTjul, PDO 57 0.695 0.062 
S, PDO 57 0.690 0.063 
S, Dapr, PTjul 57 0.671 0.083 
S 57 0.666 0.073 
S, Dapr 57 0.647 0.087 
S, ETjun 57 0.627 0.071 
S, ETjun, PTjul 57 0.617 0.073 
S, Djun, PTjul 57 0.601 0.072 
S, Djun 57 0.582 0.076 
S, PTjun, PTjul 57 0.581 0.079 
S, Dmax, PTjul 57 0.570 0.076 
S, Dmay, PTjul 57 0.570 0.069 
S, PTjun 57 0.563 0.080 
S, PTmay, PTjul 57 0.561 0.083 
S, ETmay 57 0.561 0.080 
S, Dmax 57 0.557 0.075 
S, PTmay 57 0.556 0.085 
S, ETmay, PTjul 57 0.555 0.081 
S, PTapr, PTjul 57 0.554 0.081 
S, Dmay 57 0.533 0.074 
S, PTapr 57 0.529 0.083 
S, ETapr, PTjul 57 0.458 0.094 
S, ETapr 57 0.415 0.100 
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # predictions ρ MAE 

Stellako 

S, PTapr, PDO 57 0.531 0.217 
S, Dapr, PDO 57 0.517 0.209 
S, ETjun, PDO 57 0.486 0.218 
S, PDO 57 0.440 0.231 
S, ETmay, PDO 57 0.437 0.231 
S, PTjul, PDO 57 0.420 0.236 
S, ETmay 57 0.400 0.265 
S, ETapr, PDO 57 0.360 0.209 
S, ETjun 57 0.320 0.263 
S, Dmax, PDO 57 0.318 0.238 
S, Dmay, PDO 57 0.315 0.241 
S, Dmax 57 0.307 0.257 
S, PTmay, PDO 57 0.286 0.248 
S, PTapr 57 0.281 0.253 
S, Dapr 57 0.280 0.241 
S, PTjun, PDO 57 0.267 0.243 
S 57 0.216 0.297 
S, PTmay 57 0.212 0.271 
S, PTjul 57 0.210 0.279 
S, Djun, PDO 57 0.204 0.262 
S, Djun 57 0.186 0.268 
S, PTjun 57 0.152 0.279 
S, Dmay 57 0.072 0.275 
S, ETapr 57 0.062 0.280 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation  
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Table S4. Results of Multivariate EDM (continued) 

stock predictors # predictions ρ MAE 

Weaver 

S, Dmax, Dapr 39 0.573 0.176 
S, Dapr, PTjul 39 0.569 0.175 
S, Dapr 39 0.555 0.180 
S, PTmay 39 0.525 0.172 
S, Dapr, Djun 39 0.499 0.177 
S, Dapr, PTmay 39 0.497 0.179 
S, Dapr, ETjun 39 0.496 0.184 
S, Dapr, PTjun 39 0.470 0.177 
S, Dmax 39 0.442 0.201 
S, ETjun 39 0.426 0.208 
S, Dmay 39 0.398 0.192 
S, Djun 39 0.394 0.194 
S, Dapr, ETapr 39 0.380 0.189 
S, Dapr, Dmay 39 0.373 0.187 
S, PDO 39 0.335 0.180 
S, PTjul 39 0.314 0.200 
S, PTjun 39 0.258 0.199 
S, ETapr 39 0.249 0.193 
S, Dapr, PTapr 39 0.218 0.206 
S, Dapr, ETmay 39 0.216 0.207 
S 39 0.187 0.227 
S, PTapr 39 0.168 0.219 
S, ETmay 39 0.159 0.211 
S, Dapr, PDO 39 0.099 0.211 

ET = Entrance Island SST, PT = Pine Island SST,  

D = Fraser River discharge, PDO = Pacific Decadal Oscillation 


